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Abstract. Dynamic size effects in a lattice gas model with two-vacancy-assisted hopping are
studied by Monte Carlo simulation. A characteristic length of cooperativity is derived from
the slowing down of the relaxation of the site-occupation autocorrelation function and of the
orientation autocorrelation function of non-spherical particles in confining geometries. Good
agreement is found with the cooperativity length obtained previously by measuring the size
dependence of the fraction of permanently blocked particles.

1. Introduction

The concept of cooperativity and of cooperatively rearranging regions has been widely used
to describe molecular motion in supercooled glass-forming liquids, since the work of Adam
and Gibbs [1]. Recently, a model with vacancy-assisted hopping on the triangular lattice
has been proposed as a model of molecular cooperativity in supercooled liquids near the
glass transition [2, 3]. It is argued [4] that the model should apply to those liquids in
which diffusive motion is controlled by steric hindrance. For the model a cooperatively
rearranging region can be defined as the region of minimum extent in which particles must
be rearranged in order to make a blocked particle mobile. In [2] the cooperativity length,
i.e. the average size of cooperatively rearranging regions, was derived from the fraction of
permanently blocked particles which exist in a lattice of finite size as a result of the kinetic
rule of the model. In this paper we show how the characteristic length of cooperativity
can also be determined from measurement of finite-size effects on quantities which have
an experimental counterpart in real physical systems. To this end we study, for a slightly
modified version of the same model, the slowing down of the decay of time-dependent
correlation functions in restricted geometries.

The paper is organized as follows. The model is introduced in section 2. In section 3
the definition of the cooperativity length is discussed, and the results for its concentration
dependence from [2] are reviewed. In section 4 the results of simulations in restricted
geometry are presented, and the characteristic lengths obtained are compared with the
cooperativity length calculated in [2].

2. The model

The model is a lattice gas on a two-dimensional triangular lattice with two-vacancy-
assisted hopping diffusion. In the initial configurations every lattice site is occupied with
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Figure 1. A geometrical interpretation of the kinetic rules of the model for translational jumps
(a) and rotational jumps (b) for hard-core particles of particular shape (see the text). In the figure,
both the translational jump from A to B and the rotational jump fromα to β are prohibited by
either of the two neighbouring particles.

a probability given by the concentrationc, independently of the other sites. A particle can
jump to an empty nearest-neighbour site only if the two sites on either side of the jump
path are empty [2]. In addition, in the present model particles also have an orientational
degree of freedom; with each particle a unit vectorp is associated, which can be oriented
along the bisectrices of the angles formed by the lattice bonds. In the initial configurations
particles are oriented at random, independently of one another. The particles can perform
rotations ofπ/3 between neighbouring orientations. The condition for a rotation is that the
two neighbouring lattice sites located along the direction between the original orientation
of p and the final one are empty. No requirement is imposed on the orientation of particles
on adjacent sites, and the direction ofp is conserved as the particle jumps from one site to
another. The values of the attempt frequencies0j and0r of the translational and rotational
jumps, respectively, are set equal to one. These kinetic rules are time reversible and preserve
the statistical independence of the occupation of different sites and of the orientation of
different particles at any given time. In other words, there are nostatic correlations.

The constraints imposed in the present model both on translation and rotation of particles
follow geometrically if the particles are hard discs with small ‘noses’ in the direction ofp
and −p, and the disc diameter is betweena and a

√
3/2, wherea is the lattice constant.

The constraint on translational jumps is obtained under the assumption that the particle has
to follow a straight line in a jump. Figure 1(a) illustrates that under this condition a particle
cannot jump to a nearest-neighbour vacancy unless the two adjacent nearest-neighbour sites
are vacant, too. Figure 1(b) shows that a rotation of a particle of this shape requires two
specific nearest-neighbour sites to be vacant.

3. The cooperativity length and size effects

The kinetic rules of the model inducedynamiccorrelations between particles on different
sites of the lattice. At high concentrations, at a given time, the vast majority of particles
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are blocked by neighbouring particles. The mobile particles, which are allowed to jump
in at least one of the six nearest-neighbour directions, tend to occupy regions of relatively
low concentration. Making a blocked particle mobile, at high concentration, requires the
coordinated motion of many surrounding particles. A cooperatively rearranging region can
be defined as the region of minimum extent within which particles must be reshuffled in
order to make a given particle mobile. The size of this region varies from particle to particle
and depends on the total configuration. The average value of the size of the cooperatively
rearranging regions defined in this way is the characteristic length of cooperativity [5]. Since
the average number of particles which are blocked at a given time increases with increasing
concentration, the cooperativity length must also be an increasing function of concentration.

Figure 2. The fractionfl of permanently blocked particles as derived by the cellular automaton
for l × l lattices with periodic boundary conditions. From left to right:l = 128, 64, 32, 16, 8, 4.
Inset: characteristic lengthlp (see equation (1) and the text).

The determination of the characteristic length of cooperativity as the average size of
such cooperatively rearranging regions presents heavy computational problems. A simpler
and computationally more efficient way to proceed is by studying dynamic size effects. The
first effect to study is the existence of permanently blocked particles in lattices of finite size
l. In an infinite lattice permanently blocked particles would not exist [2]. The permanent
blocking of particles in a finite lattice is determined by the initial configuration. Averaging
over an equilibrium ensemble of initial configurations presents no problem because of the
statistical independence of site occupation and particle orientation. In [2] the number of
permanently blocked particles is computed using a cellular automaton. The automaton at
each step removes all mobile particles from the lattice. The particles left in the final state
are permanently blocked in the starting configuration. The fraction of permanently blocked
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particles increases with increasing concentrationc and decreasing lattice sizel. For any
size l, as a function of concentration, a transition occurs from a situation where almost
all particles are mobile to a situation where all particles are permanently blocked. This is
shown in figure 2 forl × l lattices with periodic boundary conditions in both directions. An
l-dependent transition concentrationcp(l) can be defined by [6]

cp(l) =
∫ 1

0
c
∂fl

∂c
dc. (1)

By inverting this function we obtain a concentration-dependent characteristic lengthlp(c),
shown in the inset in figure 2. The unsatisfactory aspect of this method is that in real
physical systems no quantity corresponding to the number of permanently blocked particles
can be measured.

The second method, which is used in this paper, can in principle also be applied to real
systems. It consists in studying the size dependence of the relaxation of time-dependent
correlation functions of dynamical quantities. When the size of a system in one or more
directions is smaller than the cooperativity length, the dynamics of the system is slowed
down by the cutting off of cooperative processes. Therefore the correlation function will
decay more slowly in a system of small size. It is also possible that the asymptotic long-time
limit for the infinite system is never reached for the finite system, because of the existence
of permanently blocked particles.

4. Restricted geometries

In this section we study a system confined to a strip of widthB and infinite length. The outer
walls of the strip influence the mobility of particles located at the strip boundaries as if they
were lines of completely filled sites. Therefore, particles at the strip boundaries cannot jump
in a direction parallel to the walls. Due to the presence of rigid walls, permanently blocked
particles can occur. The probability of finding permanently blocked particles increases with
decreasing strip width. Due to the kinetic constraints, particles arranged in a line block each
other, and any completely filled line crossing the strip is permanently blocked. Such filled
lines form a rigid structure which divides the strip into separate regions, between which
particles cannot be exchanged.

4.1. Density fluctuations

We present the results obtained by Monte Carlo simulation for the normalized site-occupation
autocorrelation function defined by

φ0(t) = 〈1n0(t)1n0(0)〉
c(1 − c)

(2)

wherec is the concentration of particles and1n0(t) is the fluctuation of the site-occupation
numbern0(t) of site 0 at timet given by

1n0(t) = n0(t) − 〈n0〉 = n0(t) − c. (3)

The brackets〈· · ·〉 indicate an ensemble average. It is obtained by averaging over a sufficient
number of initial configurations, which depends on the size of the system. The denominator
in equation (2) is the mean square fluctuation of the site-occupation number

〈(1n0(0))2〉 = c(1 − c). (4)
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Figure 3. The site-occupation autocorrelation functionφ0(t) for concentrationc = 0.65 for
systems confined in strips of different widthsB.

Figure 4. The size dependence of the value ofφ0(t) at time t = τ for c = 0.65. τ is defined
as the time whenφ0(t) has decayed to 0.01 in the infinite system.

Note thatφ0(t) is the integral of the coherent intermediate scattering function (or density–
density correlation function)F(k, t) over all wave vectors of the first Brillouin zone. In
figure 3 the results forφ0(t) are shown for the concentrationc = 0.65 for different values
of the widthB of the strip. Similar families of curves are obtained at other concentrations.
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It is apparent that, as the width of the strip is decreased, the relaxation ofφ0(t) becomes
slower. The slowing down occurs since rearrangement processes that would extend beyond
the width of the strip are cut off by the walls. For the smaller widths,φ0(t) decays to a
non-zero value in the long-time limit, signalling that a fraction of particles (and vacancies)
are permanently blocked. It is then possible to measure the extension of the cooperatively
rearranging regions by studying the slowing down of the decay ofφ0(t) with decreasing
strip width. We proceed in the following way: we define a relaxation timeτ as the time at
which the correlation functionφ0(t) in the ‘infinite system’ has decayed to 1% of its value
at t = 0, which is unity. By ‘infinite system’ we mean a large system with fully periodic
boundary conditions. We then plot the value of the correlation function att = τ in strips
of width B as a function of 1/B. In figure 4 we show the values of 1−φ0(τ ) as a function
of 1/B for concentrationc = 0.65. The function decreases monotonically from the value
of 0.99 at B = ∞. A characteristic widthBφ can be defined as the width at which the
correlation functionφ0 at t = τ assumes the valueφ, which can be chosen arbitrarily within
certain limits.Bφ is obtained from curves like that of figure 4 by interpolation.

Figure 5. The characteristic widthBφ derived from the site-occupation autocorrelation function
φ0(t) for different values ofφ (see the text). The characteristic length of cooperativitylp (the
inset in figure 2) is included for comparison (diamonds). Lines are guides to the eye only.

In figure 5 we show the results obtained for different choices ofφ. The data are plotted
on a logarithmic scale, and the curves are roughly parallel to each other. This means that our
characteristic length is a function ofφ andc of the form of a product of a term depending
only on φ multiplied by a term depending only onc:

Bφ(c, φ) = α(φ)β(c). (5)

In figure 5 the data are compared to the cooperativity lengthlp obtained by inverting
equation (1). The data show a good agreement between the concentration dependence of
Bφ and that oflp.



The characteristic length of cooperativity 2739

4.2. Orientational relaxation

In this section we study the orientational autocorrelation functionφp(t) defined as

φp(t) = 〈p(t) · p(0)〉 (6)

wherep(t) is a unit vector which describes the orientation of a particle. The kinetic rule
for the rotation of a particle couples its rotational motion to the occupation of the sites
in its first-neighbour shell. If in a given configuration a particle is not allowed to rotate,
the unblocking of rotation requires the jumping of one or two particles out of the nearest-
neighbour shell around that particle. In this way the rotational motion is coupled to the
cooperative processes of the translational motions.

Figure 6. The orientation autocorrelation functionφp(t) for concentrationc = 0.65 for systems
confined in strips of different widthsB.

In figure 6 we show the result forφp(t) for concentrationc = 0.65 for different values
of the strip widthB. The results at different concentrations are qualitatively similar. The
same qualitative behaviour as for the site-occupation autocorrelation function is found,
i.e. a slowing down is observed as the width of the strip is decreased. This means that
the orientational relaxation is strongly influenced by the cooperative processes dominating
the density fluctuations at high concentrations. To determine a concentration-dependent
characteristic widthBφ we can repeat the procedure used in the previous section for the
case of density fluctuations. We define a timeτ as the time at which the correlation function
φp(t) in the infinite system has decayed to 1% of its value att = 0. Bφ is that strip width
for which φp(t) at timet = τ has decayed only to a valueφ, which can be chosen arbitrarily
within certain limits.

In figure 7 the results forBφ are shown and compared with the cooperativity length
lp(c). Again good qualitative agreement is found.
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Figure 7. The characteristic widthBφ derived from the orientation autocorrelation function
φp(t) for different values ofφ (see the text). The characteristic length of cooperativitylp is
included for comparison (diamonds). Lines are guides to the eye only.

5. Summary

We have studied, by Monte Carlo simulation, the size dependence of the decay of the
correlation functions for site occupation and for the orientation of non-spherical molecules
in a two-dimensional lattice gas with two-vacancy-assisted hopping dynamics. Moving a
particle in this model requires the coordinated motion of particles within a certain region,
whose average size is the characteristic length of cooperativity. The most direct evidence
of the existence of this natural length scale is given by size effects. We have studied the
consequences of confinement of the system in strips of widthB, showing that the decay
of both correlation functions is slowed down appreciably when the characteristic length of
cooperativity becomes comparable withB. The concentration dependence of this length
has been determined, showing good agreement with the result obtained previously from the
size dependence of the number of permanently blocked particles.
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[2] Jäckle J and Kr̈onig A 1994J. Phys.: Condens. Matter6 7633
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